Identification of Multivariable Linear Parameter-Varying Systems Based on Subspace Techniques

نویسندگان

  • Vincent Verdult
  • Michel Verhaegen
چکیده

The paper presents a subspace type of identification method for multivariable linear parameter-varying systems in state space representation with affine parameter dependence. It is shown that a major problem with subspace methods for this kind of systems is the enormous dimensions of the data matrices involved. To overcome the curse of dimensionality, we suggest to use only the most dominant rows of the data matrices in estimating the model. An efficient selection algorithm is discussed that does not require the formation of the complete data matrices, but can process them row by row.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Line Identification of the First Markov Parameter of Linear Multivariable Plants (RESEARCH NOTE)

In this paper three methods for on-line identification of first markov parameter at linear multivariable plants are presented. In these methods input-output data are used far the on-line identification of the first markov parameter.

متن کامل

Identification of Linear, Parameter Varying, and Nonlinear Systems: Theory, Computation, and Applications

In this workshop, the powerful subspace identification method (SIM) is described for the well understood case of linear time-invariant (LTI) systems. Recent extensions are show for linear parameter-varying (LPV), Quasi-LPV, and general nonlinear (NL) systems such as polynomial systems. The presentation, following the extended tutorial paper (Larimore, ACC2013), includes detailed conceptual deve...

متن کامل

Identification of Distributed Parameter Systems Based on Sensor Networks and Multivariable Estimation Techniques

The domain of system identification may be developed today using the powerful tool represented by the intelligent sensor networks, placed in real distributed parameter systems. The sensor networks, as a “distributed sensor”, allow the usage of multivariable estimation techniques, in different ways: classical linear methods of modelling or methods based on artificial intelligence for complex non...

متن کامل

Fast Time-varying modal parameter identification algorithm based on two-layer linear neural network learning for subspace tracking

* This work is supported by NSF Grant #10672045 to Yu Kaiping Abstract—The key of fast identification algorithm of time-varying modal parameter based on subspace tracking is to find efficient and fast subspace-tracking algorithm. This paper presents a modified version of NIC(Novel Information Criterion) adopted in two-layer linear neural network learning for subspace tracking, which is applied ...

متن کامل

Fault Detection and Estimation based on Closed-loop Subspace Identification for Linear Parameter Varying Systems

This paper presents a data driven solution of the Fault Identification approach Connected to Subspace Identification (FICSI) for Linear Parameter Varying (LPV) systems. The proposed solution links system identification to fault detection and estimation in affine LPV systems. As an extension of the model-based FICSI-LPV, the data driven solution is also formulated based on the affine LPV model s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004